
 
 
 
 

PLANNED INSTRUCTION 
 
 
 
 
 
 
 
 

A PLANNED COURSE FOR: 
 

 
Computer Programming 1 

_______________________________________ 
 

 
Curriculum writing committee: 

Jessica Hubal 
 

 
 
 

Grade Level: 9-12 
 
 

 
 
 

Date of Board Approval:  _______2021______________ 

 
 
 
Time/Credit for the Course:  Half Year, .5 CREDIT, 90 days, meeting 1 period per day 
 
 



Computer Programming 1 

Programs  75% 

Quizzes  20% 

Participation  5% 

 

 

Curriculum Map 
 

1. Marking Period One:   
 

• Overview based on 45 days:   
 
Unit 1: Basic Components (Events, Labels, Buttons, Variables, Radio Buttons) 

o  Day 1:  Reflect upon the importance of coding and programming 
languages.  

o  Days 2-6: Represent a step-by-step algorithmic progress using sequential 
code statements. Introduce App Lab features (Code.org’s JavaScript 
programming environment) and investigate events, labels, buttons, 
picture boxes and radio buttons.  

o  Days 7-15: Incorporate variables of different data types into applications, 
specifically integers, doubles, strings and Booleans. Evaluate expressions 
that use arithmetic and relational operators and manipulate strings 
(concatenation). 

Unit 2: Decision Structures 
o Days 16-45:  Write conditional statements, as well as nested conditional 

statements, to determine result. Construct and use counter/accumulator 
variables within structures. Write and evaluate expressions that use 
logical operators. 

• Goals:   
o Build a graphical user interface on applications that include multiple 

components, such as labels, buttons, radio buttons, user input (text 
boxes/prompts), picture boxes, etc. 

o Create programs that declare and initialize variables. 
o Declare variables identifying the correct data type. 
o Identify the correct graphical user interface components for a given 

problem. 
o Build programs that utilize the screen and event procedures properly. 



o Develop and implement algorithms that incorporate decision structures 
(Conditionals -If’s, If-Else’s, Nested If- Structures). 

o Construct and use counter and accumulator variables. 
o Determine the results of code segments. 

• Big Ideas: 
o Programming enables problem solving, human expression, and creation 

of knowledge. 
o Algorithms are used to develop and express solutions to computational 

problems. 
o Programmers can use a formal, iterative design process or a less rigid 

process of experimentation. 
o Programmers will encounter phases of investigating and reflecting, 

designing, prototyping, and testing. 

2. Marking Period Two:   
• Overview based on 45 days:   

Unit 3: Control Structures 
o  Days 1-8: Incorporate iteration (both while and for loops) and selection 

into code as a way of providing instructions for the compiler to process 
each of the many possible input values.  

o  Days 9-12: Develop iteration conditions that utilize sentinel (flag) values. 
o  Days 12-15: Evaluate expressions that use modulus operators and utilize 

them to determine if input/random values are even or odd.  
Unit 4: Functions 

o Days 16-25: Break down program code into smaller, more manageable 
pieces by creating functions.  Write statements to call functions and 
determine the result or effect of a function call.  Develop functions that 
utilize arguments, parameters and return values.  

Unit 5: String Functions 
o Days 26-35: Write and evaluate expressions that manipulate strings using 

pre-made String functions (substring, replace, index Of, etc.).  Incorporate 
iteration to manipulate strings to solve problems. 

Unit 6: Final Application and Poster 
o Days 36-45: Develop a computer program of student choice that 

incorporates key elements learned within the course.  Create a poster 
that directly states the title, goals(s) and purpose of program, as well as 
displays code/application screen(s) and direct project link using a Quick 
Response (QR) code. 

 
 
 
 



• Goals:   
o Identify problems where loops and counter/accumulating variables need 

to be utilized. 
o Create programs that use iteration (while, for) and sentinels (flags) 

conditions. 
o Create programs that utilize counter and accumulator variables, as well 

as modulus operators to produce more efficient code. 
o Build applications that use the appropriate String functions to complete 

the specified task. 
o Recognize situations where decision and control structures should be 

used to make more efficient use of the code. 
• Big Ideas: 

o Programmers integrate algorithms and abstraction to create programs 
for creative purposes and to solve problems. 

o Programmers need to think algorithmically and use abstraction to define 
and interpret processes that are used in a program. 

o Programmers can use a formal, iterative design process or a less rigid 
process of experimentation. 

o Programmers will encounter phases of investigating and reflecting, 
designing, prototyping, and testing. 

Textbook and Supplemental Resources: 
• Code.org’s App Lab Built-in Application Programming Interface  

o https://studio.code.org/docs/applab/ 
• Rauschmayer, A. (2014). Speaking JavaScript: An in-depth guide for programmers. 

Sebastopol, CA: O'Reilly Media. 
o Free Online Text Available at http://speakingjs.com/es5/index.html 

• CodeHS.com’s Introduction to Computer Science in JavaScript (Bulldog) course 
• Code.org’s CS Fundamentals Express course 
• Code.org’s CS Discoveries course: Unit 3 – Interactive Animations and Games  

 

 

 

 

https://studio.code.org/docs/applab/
http://speakingjs.com/es5/index.html


Curriculum Plan 

Unit 1: Basic Components (Events, Labels, Buttons, Variables, etc.)         15 days 
 
Standards: 

• Pennsylvania Department of Education Computer Science Standards 
o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 

human opponent or solve a problem. 
o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-16: Take on varying roles, with teacher guidance, when collaborating with 
peers during the design, implementation and review stages of program 
development. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Apply the process used for creating programs. (DOK-4) 
o Recognize, label, and place text boxes, labels, buttons, and radio buttons on App Lab 

application. (DOK -1) 
o Construct an application. (DOK-2) 
o Use operators and expressions. (DOK-1) 
o Represent a value with a variable. (DOK-2) 
o Create variable assignments. (DOK-4) 



o Use rounding functions. (DOK-1) 
o Determine the value of a variable as a result of an assignment. (DOK-3) 
o Classify appropriate data types. (DOK-2) 
o Construct multiple variables in programming assignments. (DOK-3) 
o Evaluate expressions that use arithmetic operators and relational operators (DOK-2) 
o Create event procedures. (DOK-2) 
o Design App Lab applications that solve problems. (DOK-4) 
o Implement and apply an algorithm. (DOK-4) 

Core Activities and Corresponding Instructional Methods: 
 Place App Lab components on an application and rename the properties. 

o Direct instruction and practice on App Lab components using SMART technology 
(i.e., the toolbox, the properties window, building screen, etc.). 

o Teacher led demonstration using different application examples. 
o Lead a classroom discussion that prompts students to compare and contrast App 

Lab components and their purposes. 
o Other possible strategies: code tracing, error analysis, work backwards. 

 Write the “Hello, World” application. 
o Classroom discussion and guided practice on building graphical user interfaces 

for program development. 
o Other possible strategies: code tracing, error analysis, work backwards. 

 Write a program that allows the students to practice using buttons, textboxes, and 
labels.  The program will also incorporate mathematical equations to arrive at a 
solution.  Variable assignment to the appropriate data type will also be exhibited by the 
student in this program. 

o Direct instruction and practice on App Lab components (i.e., calculating the 
mean of user input, incorporating operators, symbols, data types, and variable 
declaration statements, and using proper programming design practices.  

o Use diagnostic assessment and questioning to evaluate students’ knowledge of 
proper data types and their uses.    

o Teacher led demonstration using different programming controls in example 
code.  

o Classroom discussion and guided practice on building graphical user interfaces 
with different components for program development. 

o Other possible strategies: code tracing, error analysis, work backwards. 
 Write a program with option buttons that allows the user to choose between different 

mathematical operations.  The program will propose a problem that requires students 
to create solutions using logical reasoning.   



o Teacher led demonstration on how to write a program using option buttons and 
checkboxes. 

o Direct instruction and practice on mathematical operations and their operators, 
as well as App Lab components and their event procedures. 

o Other possible strategies: code tracing, error analysis, work backwards. 
 

Assessments: 
o Diagnostic: Algebra 1 Common Assessment / Keystone Algebra 1 Test Results  
o Formative:  

 Questioning and analysis of student work (e.g., classroom assignments, 
work samples, etc.). 

 Unit 1 Quiz 
 Practice programming assignments 

o Summative: 
 Graded programming assignments 
 Unit 1 Quiz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Unit 2: Decision Structures                                     30 days 

Standards: 
• Pennsylvania Department of Education Computer Science Standards 

o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 
human opponent or solve a problem. 

o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-16: Take on varying roles, with teacher guidance, when collaborating with 
peers during the design, implementation and review stages of program 
development. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 2-AP-12:  Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

o 3B-AP-14: Construct solutions to problems using student-created components, 
such as procedures, modules and/or objects. 

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Use and appropriately label message boxes, check boxes, counter variables and 

accumulating variables in programs. (DOK-1) 
o Generate and use random numbers. (DOK-1) 
o Design App Lab applications that solve problems. (DOK-4) 



o Create decision structures to develop algorithms and control the flow of execution in a 
App Lab program. (DOK-4) 

o Determine the result of conditional statements. (DOK-2) 
o Write nested conditional statements and determine the result of nested conditional 

statements. (DOK-4) 
o Design Boolean expressions using appropriate logical operators to test conditions and 

decision structures. (DOK-4) 
o Apply the concept of good program design and good programming style in applications. 

(DOK-3) 
 
Core Activities and Corresponding Instructional Methods: 
 Write programs that utilize decision structures (including nested), such as a guessing 

game or a payroll application.  
o Lead a classroom discussion that prompts students to create accurate conditions 

and given different problem statements. 
o Teacher led demonstration on how to incorporate if, if-else, and if-else-if 

statements to complete given tasks.  
o Direct instruction and practice on App Lab components, data types, if-

statements, conditions, and proper documentation practices.  
 Write a program that receives input from textboxes that calculates the addition, 

subtraction, multiplication, or division of two numbers, depending on which option 
button the user clicks on. 

o Direct instruction and practice on App Lab components, data types, if-
statements, conditions, event procedures, and proper documentation practices. 

o Guided practice:  Students will write programs that use option buttons, 
checkboxes, and if, if-else, and if-else-if statements to complete a given task.  

o Classroom discussion and guided practice on creating programs using different 
forms of the if-statement.  

 Write programs that utilize compound Boolean expressions within a decision structure 
conditional, such as a test grade checker or a rock, paper, scissors application.  

o Lead a classroom discussion that prompts students to create accurate conditions 
and given different problem statements. 

o Teacher led demonstration on how to incorporate if, if-else, and if-else-if 
statements to complete given tasks.  

o Direct instruction and practice on App Lab components, data types, if-
statements, conditions, and proper documentation practices.  

 Write programs that utilize counting variables, such as a pizza order, a sandwich order, 
and a modified blackjack card game.  



o Lead a classroom discussion that prompts students to create accurate conditions 
and given different problem statements. 

o Teacher led demonstration on how to incorporate if, if-else, and if-else-if 
statements to complete given tasks.  

o Direct instruction and practice on App Lab components, data types, if-
statements, conditions, and proper documentation practices.  
 

Assessments: 

o Diagnostic: Analysis of student work (e.g., classroom assignments, work samples, 
quizzes)/Observation and anecdotal notes 

o Formative:  
 Diagnostic assessment and questioning 
 Unit 2 Quiz 
 Practice programming assignments 

o Summative: 
 Graded programming assignments 
 Unit 2 Quiz 

 

 

 

 

 

 

 

 

 

 

 

 

 



Unit 3: Control Structures               15 days 
 
Standards: 

• Pennsylvania Department of Education Computer Science Standards 
o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 

human opponent or solve a problem. 
o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.14: Construct solutions to problems using student-created components, 

such as procedures, modules and/or objects. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-08: Compare and refine multiple algorithms for the same task and 
determine which is the most appropriate. 

o 1B-AP-16: Take on varying roles, with teacher guidance, when collaborating with 
peers during the design, implementation and review stages of program 
development. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 2-AP-12:  Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

o 3B-AP-14: Construct solutions to problems using student-created components, 
such as procedures, modules and/or objects. 

o 3A-AP-15: Justify the selection of specific control structures when tradeoffs 
involve implementation, readability, and program performance, and explain the 
benefits and drawbacks of choices made. 



o 3A-AP-16: Design and iteratively develop computational artifacts for practical 
intent, personal expression, or to address a societal issue by using events to 
initiate instruction.  

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Express an algorithm that uses iteration without using a programming language. (DOK-2)  
o Design algorithms and write programs that use looping structures. (DOK-4) 
o Determine the result or side effect of iteration statements. (DOK-3) 
o Differentiate between event controlled loops and count controlled loops. (DOK-3) 
o Apply the concepts of sentinels (flags) and events to control loops. (DOK-4) 
o Use counter and accumulator variables. (DOK-1) 
o Design program with the while and for loops. (DOK-4) 
o Compare multiple algorithms to determine if they yield the same side effect or result. 

(DOK-3) 
o Apply the concept of good program design and good programming style in applications. 

(DOK-3)  
Core Activities and Corresponding Instructional Methods: 
 Write programs that use “while” and “for” loops.  

o Teacher led demonstration on building programs that need loops for efficiency. 
o Guided practice:  Include step-by-step written explanation of how to create a 

complex program that makes use of loops. 
o Direct instruction and practice on programs that utilize iteration 
Programs include: 
 Adding a set of numbers together and display the sum in a label 
 Finding the factorial of a number 
 Finding the sum of odd numbers (numbers 1 to a maximum number entered) 
 Finding the average score of entered test scores and bowling scores 
 Generating a unique random number and finding the number of iterations it 

took 
Assessments: 

o Diagnostic: Analysis of student work (e.g., classroom assignments, work samples, 
quizzes)/Observation and anecdotal notes  

o Formative:  
 Diagnostic assessment and questioning 
 Unit 3 Quiz 
 Practice programming assignments 

o Summative: 
 Graded programming assignments 
 Unit 3 Quiz 



Unit 4: Functions                 10 days 

Standards: 
• Pennsylvania Department of Education Computer Science Standards 

o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 
human opponent or solve a problem. 

o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.14: Construct solutions to problems using student-created components, 

such as procedures, modules and/or objects. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-08: Compare and refine multiple algorithms for the same task and 
determine which is the most appropriate. 

o 1B-AP-11: Decompose (break down) problems into smaller, manageable sub 
problems to facilitate the program development process. 

o 1B-AP-16: Take on varying roles, with teacher guidance, when collaborating with 
peers during the design, implementation and review stages of program 
development. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 2-AP-12:  Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

o 3B-AP-14: Construct solutions to problems using student-created components, 
such as procedures, modules and/or objects. 



o 3A-AP-15: Justify the selection of specific control structures when tradeoffs 
involve implementation, readability, and program performance, and explain the 
benefits and drawbacks of choices made. 

o 3A-AP-16: Design and iteratively develop computational artifacts for practical 
intent, personal expression, or to address a societal issue by using events to 
initiate instruction.  

o 3A-AP-17: Decompose problems into smaller components through systematic 
analysis, using constructs such as procedures, modules, and/or objects. 

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Write statements to call functions. (DOK-1) 
o Define function calls, arguments, parameters, and function returns. (DOK-1) 
o Determine the result or effect of a function call. (DOK-3)  
o Analyze how the use of function abstraction manages complexity in a program. (DOK-4)  
o Develop procedural abstractions to manage complexity in a program by writing 

functions. (DOK-4) 
o Modify call functions to incorporate arguments. (DOK-2) 
o Modify functions to incorporate parameter(s). (DOK-2) 
o Design App Lab applications that solve problems. (DOK-4) 
o Apply the concept of good program design and good programming style in applications. 

(DOK-3) 
Core Activities and Corresponding Instructional Methods: 
 Write programs that utilize functions (including arguments and parameters), such as 

rectangular area, sorting two numbers, adding coins, Nim game, etc. 
o Lead a classroom discussion that prompts students to create accurate functions, 

arguments, parameters, and function returns. 
o Teacher led demonstration on how to incorporate functions to complete given 

tasks.  
o Direct instruction and practice on functions that incorporate arguments, 

parameters, and function returns.  
 
 
 
 
 
 
 
 



Assessments: 
o Diagnostic: Analysis of student work (e.g., classroom assignments, work samples, 

quizzes)/Observation and anecdotal notes  
o Formative:  

 Diagnostic assessment and questioning 
 Unit 4 Quiz 
 Practice programming assignments 

o Summative: 
 Graded programming assignments 
 Unit 4 Quiz 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Unit 5: String Functions                10 days 
 
Standards: 

• Pennsylvania Department of Education Computer Science Standards 
o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 

human opponent or solve a problem. 
o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.14: Construct solutions to problems using student-created components, 

such as procedures, modules and/or objects. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-08: Compare and refine multiple algorithms for the same task and 
determine which is the most appropriate. 

o 1B-AP-11: Decompose (break down) problems into smaller, manageable sub 
problems to facilitate the program development process. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 2-AP-12:  Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

o 3B-AP-14: Construct solutions to problems using student-created components, 
such as procedures, modules and/or objects. 

o 3A-AP-15: Justify the selection of specific control structures when tradeoffs 
involve implementation, readability, and program performance, and explain the 
benefits and drawbacks of choices made. 



o 3A-AP-16: Design and iteratively develop computational artifacts for practical 
intent, personal expression, or to address a societal issue by using events to 
initiate instruction.  

o 3A-AP-17: Decompose problems into smaller components through systematic 
analysis, using constructs such as procedures, modules, and/or objects. 

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Recognize String functions. (DOK-1) 
o Evaluate expressions that manipulate strings. (DOK-2). 
o Construct algorithms that utilize String functions. (DOK-3). 
o Design App Lab applications that solve problems. (DOK-4) 
o Apply the concept of good program design and good programming style in applications. 

(DOK-3) 
Core Activities and Corresponding Instructional Methods: 
 Write String function programs that incorporate String functions (including 

toUpperCase(), toLowerCase(), length, indexOf, substring(f), substring(f,l), replace, 
includes, charAt, etc.). 
o Direct instruction and practice on String functions and their proper use. 
o Teacher led demonstration on incorporating String functions into applications. 
o Guided practice: Include step-by-step written explanation of how to use each String 

function. 
o Classroom discussion and guided practice on proper String functions usage and 

implementation in coding.  
Programs include: 
 Traversing a word that checks if every letter is a consonant or a vowel 
 Finding out how many letters/words are in a sentence 
 Determining the first, middle, and last letter in a given word/phrase 
 Identifying the two/three letter initials of a given name 
 Printing a given name backwards 

 

 

 

 

 



Assessments: 
o Diagnostic: Analysis of student work (e.g., classroom assignments, work samples, 

quizzes)/Observation and anecdotal notes  
o Formative:  

 Diagnostic assessment and questioning 
 Unit 5 Quiz 
 Practice programming assignments 

o Summative: 
 Graded programming assignments 
 Unit 5 Quiz 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Unit 6: Final Application and Poster                                10 days 
 
Standards: 

• Pennsylvania Department of Education Computer Science Standards 
o 3B.AP.09: Implement an artificial intelligence algorithm to play a game against a 

human opponent or solve a problem. 
o 3B.AP.10: Use and adapt classic algorithms to solve computational problems. 
o 3B.AP.11: Evaluate algorithms in terms of their efficiency, correctness, and 

clarity. 
o 3B.AP.12: Compare and contrast fundamental data structures and their uses. 
o 3B.AP.14: Construct solutions to problems using student-created components, 

such as procedures, modules and/or objects. 
o 3B.AP.16: Demonstrate code reuse by creating programming solutions using 

libraries and APIs. 
o 3B.AP.21: Develop and use a series of test cases to verify that a program 

performs according to its design specifications. 
o 3B.AP.22: Modify an existing program to add additional functionality and discuss 

intended and unintended implications (e.g., breaking other functionality). 
o 3B.AP.23: Evaluate key qualities of a program through a process such as a code 

review. 
• Computer Science Teachers Association Standards 

o 1B-AP-08: Compare and refine multiple algorithms for the same task and 
determine which is the most appropriate. 

o 1B-AP-11: Decompose (break down) problems into smaller, manageable sub 
problems to facilitate the program development process. 

o 1B-AP-16: Take on varying roles, with teacher guidance, when collaborating with 
peers during the design, implementation and review stages of program 
development. 

o 2-AP-10: Use flowcharts and/or pseudocode to address complex problems as 
algorithms. 

o 2-AP-11: Create clearly named variables that represent different data types and 
perform operations on their values.  

o 2-AP-12:  Design and iteratively develop programs that combine control 
structures, including nested loops and compound conditionals. 

o 3B-AP-14: Construct solutions to problems using student-created components, 
such as procedures, modules and/or objects. 



o 3A-AP-15: Justify the selection of specific control structures when tradeoffs 
involve implementation, readability, and program performance, and explain the 
benefits and drawbacks of choices made. 

o 3A-AP-16: Design and iteratively develop computational artifacts for practical 
intent, personal expression, or to address a societal issue by using events to 
initiate instruction.  

o 3A-AP-17: Decompose problems into smaller components through systematic 
analysis, using constructs such as procedures, modules, and/or objects. 

o 3B-AP-23: Evaluate key qualities of a program through a process such as a code 
review. 

Objectives:  
o Design and create a program that utilizes key concepts from Units 1-5. (DOK-4) 
o Apply the concept of good program design and good programming style in applications. 

(DOK-3) 
Core Activities and Corresponding Instructional Methods: 
 Write a final program (of student design) that utilizes key concepts learned from Units 

1-5.  The program should incorporate at least two decision structures, at least one 
control structure, two student written functions, and at least two String functions.  The 
program cannot be one that was written in class or extra credit.  Students can learn new 
concepts on their own, but detailed comments must be present for new content.  

 Create a poster that directly states the title, goal(s) and purpose of final program, as 
well as displays both the code and application screen(s). In addition, a QR code should 
be displayed on the poster, allowing users to directly access your published project link 
when scanned. 

Assessments: 
o Diagnostic: Analysis of student work (e.g., classroom assignments, work samples, 

quizzes)/Observation and anecdotal notes  
o Formative:  

 Diagnostic assessment and questioning 
 Units 1-5 Accumulative Quiz 
 Practice programming assignments 

o Summative: 
 Units 1-5 Accumulative Quiz 
 Final Program 
 Final Poster 

 



Primary Textbook(s) Used for this Course of Instruction 
 
Name of Textbook: Speaking JavaScript:  An In-depth Guide for Programmers 
 
Textbook ISBN #: 978-1449365035 
 
Textbook Publisher & Year of Publication: O’Reilly Media, 2015 
 
Curriculum Textbook is utilized in (title of course): Computer Programming 1 
 
 
 
 
Name of Textbook  

• Rauschmayer, A. (2015). Speaking JavaScript: An in-depth guide for programmers. 
Sebastopol, CA: O'Reilly Media. 

o Free Online Text Available at http://speakingjs.com/es5/index.html 
 

 

 

http://speakingjs.com/es5/index.html


Checklist to Complete and Submit: 

(Scan and email) 
 

_____   Copy of the curriculum using the template entitled “Planned 
              Instruction,” available on the district website. 
 
_____   The primary textbook form(s).  
 
_____   The appropriate payment form, in compliance with the maximum curriculum writing 
               hours noted on the first page of this document. 
 
 
 
Each principal and/or department chair has a schedule of First and Second 
Readers/Reviewers. Each Reader/Reviewer must sign & date below. 
 
First Reader/Reviewer Printed Name Christine Marcial 

First Reader/Reviewer Signature:  Christine Marcial   Date: April 7, 2021 

 

Second Reader/Reviewer Printed Name__________________________ 

Second Reader/Reviewer Signature _____________________________ Date__________ 

 

 
 
 

 
 

 
 
 
 

 


